Stay in the Loop

We are thrilled to extend a warm welcome to you as a valuable member of our vibrant crypto community! Whether you're an experienced trader, a crypto enthusiast, or someone who's just getting started on their digital currency journey, we're excited to have you onboard.

Read & Get Inspired

We're delighted to have you here and embark on this exciting journey into the world of Wikibusiness. Whether you're a newcomer or a seasoned explorer in this realm, we're dedicated to making your experience extraordinary. Our website is your gateway to a treasure trove of knowledge, resources, and opportunities.

PrimeHomeDeco

At PrimeHomeDeco, we believe that your home should be a reflection of your style and personality. Our upcoming website is dedicated to bringing you a curated selection of exquisite home decor that will transform your living spaces into elegant sanctuaries. Whether you're looking to revamp your living room, add a touch of sophistication to your bedroom, or create a cozy and inviting ambiance in your dining area, we have just the right pieces for you.

Tidal power: A forgotten renewable resource?


As the tide rises and falls, is it worth generating electricity on a large scale from its movement? It’s a question engineers have studied for one particular part of Great Britain since the 1800s—and the urgency of making carbon-free power to limit climate change could mean deciding on an answer quickly.

Most shorelines have two high and two low tides each day, a pattern that coincides with the constant tug of gravity from the moon and sun on the sea. Unlike the hydropower we make from damming rivers so the water can spin turbines as it flows downstream, tides are slow and subtle, typically raising or dropping the sea level by a foot or less each hour. And concerns over ecological disruption that surround dams on rivers should be amplified for nearshore coastal areas, which are often delicate and crucial habitats for marine and shore-based environments alike.

These drawbacks have made tidal power a puny proportion of the global renewable power we use today, despite the relative simplicity of the technology compared with solar panels. But beginning a century and a half ago, the Severn Estuary, which divides England and Wales, captured engineers’ imagination with its soaring tidal highs and lows, ranging as much as thirty to forty feet between high and low tides.

The intermingled web of channels where seawater pulsated so energetically inland was the topic of an 1882 Scientific American article suggesting the ocean’s ebb and flow could power the nascent electrical connections that were just starting to proliferate in urban areas. Engineers revisited the topic in articles published in 1921 and 1976. And in 2013, when researchers Nick Yates, Ian Walkington, Richard Burrows, and Judith Wolf concluded that the single project on the Severn would provide more than 5 percent of the United Kingdom’s entire electricity needs, relative to mid-2000s levels.

Aside from some technical details about the structures the tidal waters would pass through, the plans each engineer (or team of engineers) outlined bear an uncanny resemblance to one another across the decades, even with the monumental shifts in technology and energy needs from the era when telephones and lightbulbs were first invented to today. The basic design remains similar, almost simple: hold back some of the water when the tide is highest, and release it when it’s lower, to create a temporary stronger flow and spin turbines.

Each engineer also speculates about the future from a similar perspective, arguing that installing tidal power in the Severn may one day be necessary, even if it sounds far-fetched. The 1882 piece takes pains to “point out how extensive the use of electricity may become in the future,” and in doing so justifies imagining such a massive, costly engineering undertaking. And within the last decade, researchers wrote that without installing tidal power at the Severn, “it is difficult to foresee achievement of… the UK government’s ambitious 80 per cent CO2 reduction by 2050.”

This article appeared on JSTOR Daily, where news meets its scholarly match.



Source link

Related articles

NASA Sets Coverage for Astronaut Tracy C. Dyson, Crewmates Return

NASA astronaut Tracy C. Dyson, accompanied by Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko, will depart from the International Space Station aboard the Soyuz MS-25 spacecraft, and return to Earth. Dyson, Chub, and Kononenko...

Edison – Online Education Website Template

LIVE PREVIEWBUY FOR $15 Edison Online Education is a fresh and vibrant template for education platforms, courses, webinars, training, study, masterclasses, etc. Everything for the convenient and pleasant knowledge getting in any sphere. The item...

Tesla launches new test drive page with focus on FSD

Tesla has launched an updated test drive page for its available consumer vehicles. As could be seen in Tesla’s updated “Schedule a Drive” page, test drives now feature a notable focus on Full...

NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station

NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements...
[mwai_chat model="gpt-4"]
Exit mobile version