Stay in the Loop

We are thrilled to extend a warm welcome to you as a valuable member of our vibrant crypto community! Whether you're an experienced trader, a crypto enthusiast, or someone who's just getting started on their digital currency journey, we're excited to have you onboard.

Read & Get Inspired

We're delighted to have you here and embark on this exciting journey into the world of Wikibusiness. Whether you're a newcomer or a seasoned explorer in this realm, we're dedicated to making your experience extraordinary. Our website is your gateway to a treasure trove of knowledge, resources, and opportunities.

PrimeHomeDeco

At PrimeHomeDeco, we believe that your home should be a reflection of your style and personality. Our upcoming website is dedicated to bringing you a curated selection of exquisite home decor that will transform your living spaces into elegant sanctuaries. Whether you're looking to revamp your living room, add a touch of sophistication to your bedroom, or create a cozy and inviting ambiance in your dining area, we have just the right pieces for you.

Scientists use generative AI to answer complex questions in physics


When water freezes, it transitions from a liquid phase to a solid phase, resulting in a drastic change in properties like density and volume. Phase transitions in water are so common most of us probably don’t even think about them, but phase transitions in novel materials or complex physical systems are an important area of study.

To fully understand these systems, scientists must be able to recognize phases and detect the transitions between. But how to quantify phase changes in an unknown system is often unclear, especially when data are scarce.

Researchers from MIT and the University of Basel in Switzerland applied generative artificial intelligence models to this problem, developing a new machine-learning framework that can automatically map out phase diagrams for novel physical systems.

Their physics-informed machine-learning approach is more efficient than laborious, manual techniques which rely on theoretical expertise. Importantly, because their approach leverages generative models, it does not require huge, labeled training datasets used in other machine-learning techniques.

Such a framework could help scientists investigate the thermodynamic properties of novel materials or detect entanglement in quantum systems, for instance. Ultimately, this technique could make it possible for scientists to discover unknown phases of matter autonomously.

“If you have a new system with fully unknown properties, how would you choose which observable quantity to study? The hope, at least with data-driven tools, is that you could scan large new systems in an automated way, and it will point you to important changes in the system. This might be a tool in the pipeline of automated scientific discovery of new, exotic properties of phases,” says Frank Schäfer, a postdoc in the Julia Lab in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and co-author of a paper on this approach.

Joining Schäfer on the paper are first author Julian Arnold, a graduate student at the University of Basel; Alan Edelman, applied mathematics professor in the Department of Mathematics and leader of the Julia Lab; and senior author Christoph Bruder, professor in the Department of Physics at the University of Basel. The research is published today in Physical Review Letters.

Detecting phase transitions using AI

While water transitioning to ice might be among the most obvious examples of a phase change, more exotic phase changes, like when a material transitions from being a normal conductor to a superconductor, are of keen interest to scientists.

These transitions can be detected by identifying an “order parameter,” a quantity that is important and expected to change. For instance, water freezes and transitions to a solid phase (ice) when its temperature drops below 0 degrees Celsius. In this case, an appropriate order parameter could be defined in terms of the proportion of water molecules that are part of the crystalline lattice versus those that remain in a disordered state.

In the past, researchers have relied on physics expertise to build phase diagrams manually, drawing on theoretical understanding to know which order parameters are important. Not only is this tedious for complex systems, and perhaps impossible for unknown systems with new behaviors, but it also introduces human bias into the solution.

More recently, researchers have begun using machine learning to build discriminative classifiers that can solve this task by learning to classify a measurement statistic as coming from a particular phase of the physical system, the same way such models classify an image as a cat or dog.

The MIT researchers demonstrated how generative models can be used to solve this classification task much more efficiently, and in a physics-informed manner.

The Julia Programming Language, a popular language for scientific computing that is also used in MIT’s introductory linear algebra classes, offers many tools that make it invaluable for constructing such generative models, Schäfer adds.

Generative models, like those that underlie ChatGPT and Dall-E, typically work by estimating the probability distribution of some data, which they use to generate new data points that fit the distribution (such as new cat images that are similar to existing cat images).

However, when simulations of a physical system using tried-and-true scientific techniques are available, researchers get a model of its probability distribution for free. This distribution describes the measurement statistics of the physical system.

A more knowledgeable model

The MIT team’s insight is that this probability distribution also defines a generative model upon which a classifier can be constructed. They plug the generative model into standard statistical formulas to directly construct a classifier instead of learning it from samples, as was done with discriminative approaches.

“This is a really nice way of incorporating something you know about your physical system deep inside your machine-learning scheme. It goes far beyond just performing feature engineering on your data samples or simple inductive biases,” Schäfer says.

Smarter faster: the Big Think newsletter

Subscribe for counterintuitive, surprising, and impactful stories delivered to your inbox every Thursday

This generative classifier can determine what phase the system is in given some parameter, like temperature or pressure. And because the researchers directly approximate the probability distributions underlying measurements from the physical system, the classifier has system knowledge.

This enables their method to perform better than other machine-learning techniques. And because it can work automatically without the need for extensive training, their approach significantly enhances the computational efficiency of identifying phase transitions.

At the end of the day, similar to how one might ask ChatGPT to solve a math problem, the researchers can ask the generative classifier questions like “does this sample belong to phase I or phase II?” or “was this sample generated at high temperature or low temperature?”

Scientists could also use this approach to solve different binary classification tasks in physical systems, possibly to detect entanglement in quantum systems (Is the state entangled or not?) or determine whether theory A or B is best suited to solve a particular problem. They could also use this approach to better understand and improve large language models like ChatGPT by identifying how certain parameters should be tuned so the chatbot gives the best outputs.

In the future, the researchers also want to study theoretical guarantees regarding how many measurements they would need to effectively detect phase transitions and estimate the amount of computation that would require.

This work was funded, in part, by the Swiss National Science Foundation, the MIT-Switzerland Lockheed Martin Seed Fund, and MIT International Science and Technology Initiatives.

Republished with permission of MIT News. Read the original article.



Source link

Related articles

Edison – Online Education Website Template

LIVE PREVIEWBUY FOR $15 Edison Online Education is a fresh and vibrant template for education platforms, courses, webinars, training, study, masterclasses, etc. Everything for the convenient and pleasant knowledge getting in any sphere. The item...

Tesla launches new test drive page with focus on FSD

Tesla has launched an updated test drive page for its available consumer vehicles. As could be seen in Tesla’s updated “Schedule a Drive” page, test drives now feature a notable focus on Full...

NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station

NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements...

How to Use 999 Hz and the Law of Attraction During September 2024’s Full Moon Meditation

Full Moon Meditation September 2024: Manifest All Your Desires with 999 Hz and the Law of Attraction The full moon is a potent time for meditation and manifestation. In September 2024, this lunar phase presents...
[mwai_chat model="gpt-4"]