Stay in the Loop

We are thrilled to extend a warm welcome to you as a valuable member of our vibrant crypto community! Whether you're an experienced trader, a crypto enthusiast, or someone who's just getting started on their digital currency journey, we're excited to have you onboard.

Read & Get Inspired

We're delighted to have you here and embark on this exciting journey into the world of Wikibusiness. Whether you're a newcomer or a seasoned explorer in this realm, we're dedicated to making your experience extraordinary. Our website is your gateway to a treasure trove of knowledge, resources, and opportunities.

PrimeHomeDeco

At PrimeHomeDeco, we believe that your home should be a reflection of your style and personality. Our upcoming website is dedicated to bringing you a curated selection of exquisite home decor that will transform your living spaces into elegant sanctuaries. Whether you're looking to revamp your living room, add a touch of sophistication to your bedroom, or create a cozy and inviting ambiance in your dining area, we have just the right pieces for you.

NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing


The advanced air mobility industry is currently working to produce novel aircraft ranging from air taxis to autonomous cargo drones, and all of those designs will require extensive testing – which is why NASA is working to give them a head-start by studying a special kind of model wing. The wing is a scale model of a design used in a type of aircraft called a “tiltwing,” which can swing its wing and rotors from vertical to horizontal. This allows the aircraft to take off, hover, and land like a helicopter, or fly like a fixed-wing airplane. This design enables versatility in a range of operating environments.

Several companies are working on tiltwings, but NASA’s research into the scale wing will also impact nearly all types of advanced air mobility aircraft designs.

“NASA research supporting advanced air mobility demonstrates the agency’s commitment to supporting this rapidly growing industry,” said Brandon Litherland, principal investigator for the test at NASA’s Langley Research Center in Hampton, Virginia. “Tool improvements in these areas will greatly improve our ability to accurately predict the performance of new advanced air mobility aircraft, which supports the adoption of promising designs. Gaining confidence through testing ensures we can identify safe operating conditions for these new aircraft.”

In May and June, NASA tested a 7-foot wing model with multiple propellers in the 14-by-22-Foot Subsonic Wind Tunnel at Langley. The model is a “semispan,” or the right half of a complete wing. Understanding how multiple propellers and the wing interact under various speeds and conditions provides valuable insight for the advanced air mobility industry. This information supports improved aircraft designs and enhances the analysis tools used to assess the safety of future designs.

This work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.

“This tiltwing test provides a unique database to validate the next generation of design tools for use by the broader advanced air mobility community,” said Norm Schaeffler, the test director, based at Langley. “Having design tools validated for a broad range of aircraft will accelerate future design cycles and enable informed decisions about aerodynamic and acoustic performance.”

The wing is outfitted with over 700 sensors designed to measure pressure distribution, along with several other types of tools to help researchers collect data from the wing and propeller interactions. The wing is mounted on special sensors to measure the forces applied to the model. Sensors in each motor-propeller hub to measure the forces acting on the components independently.

The model was mounted on a turntable inside the wind tunnel, so the team could collect data at different wing tilt angles, flap positions, and rotation rates. The team also varied the tunnel wind speed and adjusted the relative positions of the propellers.  

Researchers collected data relevant to cruise, hover, and transition conditions for advanced air mobility aircraft. Once they analyze this data, the information will be released to industry on NASA’s website.

NASA Uses 14x22 Wind Tunnel to Test Advanced Air Mobility Aircraft Wing



Source link

Related articles

Tesla axed one of the Model Y’s best features in ‘Standard’ trims: here’s why

When Tesla unveiled its Standard versions of the Model 3 and Model Y this week, reactions were mixed. Many liked the addition of two new models, but they were also concerned about the...

Tunis – Personal Portfolio

LIVE PREVIEWBUY FOR $9 Tunis is a creative personal & portfolio template based on Bootstrap 4.4.1. You can use it for your personal resume, CV or your portfolio. Tunis is written in valid and clean HTML...

GovernmentAuctions.org – Top Performing Affiliate Program in its Niche

Product Name: GovernmentAuctions.org - Top Performing Affiliate Program in its Niche Click here to get GovernmentAuctions.org - Top Performing Affiliate Program in its Niche at discounted price while it's still available... All orders are protected by...

Elon Musk may rethink his charity pledge after Peter Thiel’s Bill Gates warning: report

Reports have emerged suggesting that Elon Musk might be rethinking his promise to give away most of his fortune. This was reportedly due to his longtime friend Peter Thiel, who told the world’s...
[mwai_chat model="gpt-4"]
Exit mobile version