Stay in the Loop

We are thrilled to extend a warm welcome to you as a valuable member of our vibrant crypto community! Whether you're an experienced trader, a crypto enthusiast, or someone who's just getting started on their digital currency journey, we're excited to have you onboard.

Read & Get Inspired

We're delighted to have you here and embark on this exciting journey into the world of Wikibusiness. Whether you're a newcomer or a seasoned explorer in this realm, we're dedicated to making your experience extraordinary. Our website is your gateway to a treasure trove of knowledge, resources, and opportunities.

PrimeHomeDeco

At PrimeHomeDeco, we believe that your home should be a reflection of your style and personality. Our upcoming website is dedicated to bringing you a curated selection of exquisite home decor that will transform your living spaces into elegant sanctuaries. Whether you're looking to revamp your living room, add a touch of sophistication to your bedroom, or create a cozy and inviting ambiance in your dining area, we have just the right pieces for you.

Hubble completes the largest galactic mosaic of all-time


Sign up for the Starts With a Bang newsletter

Travel the universe with Dr. Ethan Siegel as he answers the biggest questions of all

Here in the Milky Way, our own galaxy’s structure remains obscure.

gaia ESA milky way

The European Space Agency’s space-based Gaia mission has mapped out the three-dimensional positions and locations of more than one billion stars in our Milky Way galaxy: the most of all-time. Looking toward the center of the Milky Way, Gaia reveals both light-blocking and luminous features that are scientifically and visually fascinating. Being confined to observing the Milky Way from within it, there are many features of our own galaxy that remain unknown.

Credit: ESA/Gaia/DPAC

From within our home galaxy, even multiwavelength observations are limited.

This updated Radio/X-ray composite of the galactic center, featuring data from both MeerKAT and Chandra, showcases the new information that can be gleaned from stitching together multiple wavelengths of light. In the future, improved observations and superior observatories may help us solve the scientific mysteries of the origin of a variety of features within the Milky Way, including lobes, bubbles, and sprites.

Credit: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT

External galaxies, however, teach us many relevant lessons.

milky way twin analogue

The spiral galaxy UGC 12158, with its arms, bar, and spurs, as well as its low, quiet rate of star formation and hint of a central bulge, may be the single most analogous galaxy for our Milky Way yet discovered. It is neither gravitationally interacting nor merging with any nearby neighbor galaxies, and so the star-formation occurring inside is driven primarily by the density waves occurring within the spiral arms in the galactic disk.

Credit: ESA/Hubble & NASA

The largest galaxy on the sky is Andromeda: 2.5 million light-years away.

This full-scale view of the Andromeda Galaxy, M31, showcases its star-forming regions lining its spiral arms, its dust lanes, and its central, gas-poor region. Unlike the Milky Way, Andromeda lacks a prominent central bar. This image is a fairly close approximation of what human eyes would see if they could make out these details in Andromeda.

Credit: Adam Evans/flickr

Edwin Hubble observed individual stars within it in 1923, proving Andromeda’s extragalactic nature.

Hubble discovery cepheid andromeda

Hubble’s discovery of a Cepheid variable in the Andromeda galaxy, M31, opened up the Universe to us, giving us the observational evidence we needed for galaxies beyond the Milky Way and leading us, in short order, to the discovery of the expanding Universe.

Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA); Illustration via NASA, ESA, and Z. Levay (STScI)

Nearly a century later, the Hubble Space Telescope began surveying it.

Experience the largest galactic mosaic, showcasing a panoramic view of a galaxy with dense star fields and swirling dust lanes, all set against a dark space background.

This low-resolution view is actually the zoomed-out version of the original PHAT: the Panchromatic Hubble Andromeda Treasury, from 2015, which imaged more than a third of the Andromeda Galaxy and contained more than 100 million stars, individually, that could be resolved within it.

Credit: NASA, ESA, J. Dalcanton, B.F. Williams, and L.C. Johnson (University of Washington), the PHAT team, and R. Gendler

In 2015, the Panchromatic Hubble Andromeda Treasury was completed.

A dense field of countless stars, part of the largest galactic mosaic, scatters across space with varying brightness, set against a dark backdrop.

This zoomed-in view grabs only a fraction of the full Panchromatic Hubble Andromeda Treasury mosaic, showcasing millions of stars in the galactic plane of Andromeda, along with dust lanes and newborn (blue) stars and star clusters. Andromeda, although quiet, is still forming new stars today, much like our own Milky Way.

Credit: NASA, ESA, J. Dalcanton, B.F. Williams, and L.C. Johnson (University of Washington), the PHAT team, and R. Gendler

394 hours of Hubble observations were required to construct it, imaging over 100 million stars individually.

A detailed mosaic image of the Andromeda Galaxy, showcasing the largest galactic mosaic ever, with a bright central core and spiral arms adorned with star clusters and dust lanes.

This vertically-oriented view of the plane of the Andromeda galaxy is the largest photomosaic ever assembled from Hubble images. Appearing as large as the diameter of six full Moons, it took some ~600 separate Hubble observations to construct this image. All told, over 200 million individual stars have been spotted in the full-resolution 2.5 gigapixel image.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

Now, in 2025, the full galactic mosaic of Andromeda is complete.

2.5 Billion Pixel Image of Galaxy Shot by Hubble

Over 200 million stars are found inside this 2.5 gigapixel image, composed from ~600 separate observations.

A star-filled night sky showcases the largest galactic mosaic, where interstellar dust and gas form dark, cloud-like patterns against a backdrop of bright, scattered stars.

This view of a portion of Andromeda, near the edge of the disk, showcases large populations of dust sweeping around the galaxy, spanning tens of thousands of light-years in physical extent. The dust effectively blocks the light from stars behind it, while the bluer regions highlight regions devoid of dust: where the stars shine through unimpeded.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

We’ve learned, from apparent star color, where Andromeda’s dust lanes are.

Dense star field with labels indicating a dust lane, a star-forming region, and a non-dusty region. This celestial tableau resembles the largest galactic mosaic, where bright areas contrast beautifully with darker, dusty sections.

Dust lanes aren’t just present as optical, light-blocking material, but also as regions where stars are reddened relative to “normal,” dust-free regions. Here, the top and left of the image shows a dust-rich portion of Andromeda, while the lower-right region shows a dust-sparse or even dust-free region. In between them, a bright bevy of blue stars highlight a region of new star-formation, which is still taking place as far as we can tell.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI); Annotations: E. Siegel

We’ve spotted newborn star clusters: evidence of modern-day star-formation.

A dense cluster of blue and orange stars forms a vibrant, speckled pattern against the dark space backdrop, reminiscent of the largest galactic mosaic.

These observations of young, blue stars in Andromeda highlight the ongoing new star formation that’s happening there: within the dust lanes that line the galaxy’s spiral arms. The individual blue stars represent sites of recent star-formation, as the hottest, bluest, shortest-lived stars shine brightly here.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

We’ve learned Andromeda’s tilt: just 13° away from being perfectly edge-on.

A dense field of stars with varying brightness sparkles majestically against a cloudy, reddish-brown galactic background, forming part of the largest galactic mosaic ever captured.

Here. one prominent dust lane sweeps across the inner disk of Andromeda, blocking the light from background stars and reddening it severely, but also providing key information about the galactic tilt of Andromeda based on the geometry of the resultant reddening. Andromeda, once thought to be tilted by as much as ~30 degrees relative to our perspective, is now known to be inclined at a mere ~13 degrees relative to a perfectly edge-on perspective.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

Younger stars line the arms, but are absent from the galactic core.

Four-panel image showcasing the largest galactic mosaic in various wavelengths: infrared (WISE IR), helium burning (HeB), main sequence (MS), and ultraviolet (GALEX UV).

At left, infrared views of Andromeda are shown from NASA’s WISE satellite, while at right, ultraviolet views of Andromeda from GALEX are illuminated. Young stars from the latest Hubble Andromeda study, of below 500 million years (HeB) and below 200 million years (MS) are also shown. WISE highlights warm dust that Hubble is insensitive to, while GALEX highlights dense, older stellar populations that the Hubble data does not reveal.

Credit: Z. Chen et al., Astrophysical Journal, 2025

Older stars, meanwhile, are more uniformly distributed.

Four density maps of stars labeled RGB, AGB, HeB, and MS reveal varying colors and brightness. The x-axis denotes density in stars per arcsec². This display forms part of the largest galactic mosaic, capturing the cosmos's intricate dance in stunning detail.

These four stellar density maps of Andromeda, shown here, show different types of stars that are proxies for different ages of stellar population. At left, (RGB) stars 2 billion years or older are shown, while further to the right (AGB) stars between 0.8 billion and 2.0 billion years are highlighted. Next to it, (HeB) stars of up to 500 million years old are shown, and finally, at right, (MS) stars of no more than 200 million years are shown. Note the total lack of the youngest stars in the galactic center.

Credit: Z. Chen et al., Astrophysical Journal, 2025

Within Andromeda, Hubble only resolves stars intrinsically brighter than the Sun.

Vertical image of a starry night sky, reminiscent of the largest galactic mosaic. It transitions from a bright white glow at the bottom to darker blue at the top, scattered with numerous small stars.

This view of the central region of Andromeda allows one to “pan down” from the edge of the galaxy’s disk through several dust lanes, new star-forming regions, and down to the galactic innards and core of Andromeda. At the bottom of the image, the galactic nucleus, which contains no new stars younger than ~200 million years, is highlighted as the brightest, most stellar-rich region of the galaxy of all.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Image Processing: Joseph DePasquale (STScI)

Recent star-forming events were likely triggered by M32: a stripped satellite galaxy.

Bright elliptical galaxy with a dense cluster of stars at the center, forming part of the largest galactic mosaic, and surrounded by a dark starry background.

The elliptical galaxy adjacent to Andromeda, Messier 32 (M32), has properties that are very similar to what we expect a stripped galactic core that one was gas-rich and that gave rise to stellar streams around a galaxy would look like. Although this hypothesis is not yet proven, the latest Hubble data about Andromeda and its satellites supports this picture quite strongly.

Credit: NASA, ESA, Benjamin F. Williams (UWashington), Zhuo Chen (UWashington), L. Clifton Johnson (Northwestern); Processing: Joseph DePasquale (STScI)

Major new star-formation episodes will ensue when “Milkdromeda” forms.

milky way andromeda merger

A series of stills showing a visualization of the Milky Way-Andromeda merger and how the sky will appear different from Earth as it happens. This merger will begin occurring roughly 4 billion years in the future, with a huge burst of star formation leading to a depleted, gas-poor, more evolved galaxy ~7 billion years from now. Despite the enormous scales and numbers of stars involved, only approximately 1-in-100 billion stars will collide or merge during this event. The final form of the galaxy, despite the illustration here, is more likely to be a gas-rich, disk-possessing galaxy than the elliptical one shown, as only a small percentage of major mergers lead to a red-and-dead, gas-free elliptical final state.

Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas, and A. Mellinger

Mostly Mute Monday tells an astronomical story in images, visuals, and no more than 200 words.

Sign up for the Starts With a Bang newsletter

Travel the universe with Dr. Ethan Siegel as he answers the biggest questions of all



Source link

Related articles

Unload – Cargo, Shipping, Warehouse & Transport HTML5 Responsive Website Template

LIVE PREVIEWBUY FOR $89 It is high time to shape your cargo, courier and logistics project on modern lines. Modernity and innovation find their best expression in the all new Unload premium cargo HTML template...

Tesla is going in-house for robotaxi platform, says one competitor

Tesla and CEO Elon Musk have doubled down on plans to deploy in-house robotaxi ride-hailing services, as highlighted in a recent conversation with Uber’s top executive. Uber CEO Dara Khosrowshahi says that Musk was...

Evolution: The NEW Method For Getting Traffic and Sales

Product Name: Evolution: The NEW Method For Getting Traffic and Sales Click here to get Evolution: The NEW Method For Getting Traffic and Sales at discounted price while it's still available... All orders are protected by...

Crimson Skies (Xbox) by Microsoft

Price: (as of - Details)
[mwai_chat model="gpt-4"]
Exit mobile version